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FOREWORD

1. This military standard is approved for use by all Depaflments and Agencies of the
Department of Defense.

2. Beneficial comments (recommendations, additions, deletions) and any pertinent .
data which may be of use in improving this document should be addressed to: Director,
Defense Mapping Agenoy, AlTN: PR, 8613 Lee Highway, Fairfax, VA 22031-2137 by using
the self-addressed Standardization Document Improvement Proposal (DD Form 1426)
appearing at the end of this document or by letter.
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1. SCOPE

1.1 ~cop~. This standard defines MC&G product accuracy and provides a common
basis for the appropriate application of these definitions.

1.2 PurpoW. The standard accuracy definitions apply uniformly to product designers,
producers and users.

1.3 ability. These standards apply to both internal and contractual development1’
efforts by the Military Departments, Office of the Secretary of Defense, Organization of the
Joint Chiefs of Staff and the Defense Agencies of the Department
collectively known as DoD Components; and to all levels involved
maintenance of MC&G products.

of Defense (DoD),
in the preparation,

L.-
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2. APPLICABLE DOCUMENTS

2. I Gov~ment docu me~.

2.1.1 Specifications. standa ds. and handboQks.r

This section is not applicable to this standard.

2.1.2 her Governme t docume ts. dn n rawi nas. and pmat ions.

This section is not applicable to this standard.

2.2 ~on-Govemme~ 1“ ions.

This section is not applicable to this standard.

2.3 Qrder of t)recedenCe. In the event of a conflict between the text of this document
and the references cited herein (except for related associated detail specification, specifi-
cation sheets, or standards), the text of this document takes precedence. Nothing in this
document, however, supersedes applicable laws and regulations unless a specific exemp-
tion has been obtained.

-
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3. DEFINITIONS

3.1 /lbso lute horizontal accura~, The statistical evaluation of all random and system-

atic errors encountered in determining the horizontal position of a single data point with
respect to a specified geodetic reference datum. Expressed as a circular error at 90 percent
probability.

3.2 ~bsom verti~. The statistical evaluation of all random and systematic
errors encountered in determining the elevation of a single data point with respect to Mean
Sea Level (MSL). Expressed as a linear error at 90 percent probability.

3.3 @cura~. The degree of conformity with which horizontal positions and vertical
values are represented on a map, charl, or related product in relation to an established
standard.

3.4 ~atum (~. A geodetic datum is uniquely defined by five quantities. Latitude

($), longitude (k) and geoid height (N) are defined at the datum origin. The other two
quantities deflntng the datum are the semimajor axis ana flattening or the semlmajor axis
and the semiminor axis of the reference ellipsoid.

-—
3.5 Random erro r. Errors that are not classified as blunders, systematic errors, or

periodic errors. They are numerous, individually small, and each is likely to be positive as
negative.

3.6 Re Iative horizontal accur~ (pa int-to-Do in~. The statistical evaluation of all random
errors encountered in determining the horizontal position of one data point with respect to
another. Expressed as a circular error over a specified distance at 90 percent probability.

3.7 ~lat ive vertical ~ acy (00r int-to-D oin~. The statistical evaluation of all random
errors encountered in determining the elevation of one data point with respect to another,
Expressed as a linear error over a specified distance at 90 percent probability,

3.8 ~te matic error. An error that occurs with the same sign, and often with a similar
magnitude, in a number of consecutive or othenvise related observations.
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4. GENERAL REQUIREMENTS

4.1 ~ re@remen&. Product accuracy requirements are directly related to the
intended use(s) of the MC&G product. All products are generated with specific intended -
uses defined. The intended uses determine both the required accuracy value and the
accuracy category (i.e., absolute horizontal, relative horizontal, absolute vertical, or relative
vertical). Products having multiple intended uses must meet the accuracy requirement for
the most stringent intended use. However, not all maps or charts of the same type are
required to meet the same accuracy. For example, City Graphics products that are not to
be used for tactical land combat maybe produced with less accuracy than those to be used
for tactical land combat.

4.2 Jntended use of accu racy. The intended uses of MC&G products typically fall into
the following five categories: planning, navigation, target identification, gunfire suppofl, and
target positioning. In most instances, these uses require a specific level of relative accuracy
in both the horizontal and the vertical planes. Absolute accuracy is required mamly for
precise navigation and target positioning.

4.3 ~ur~ requirement de fimtlo~.
. .

MC&G product accuracy requirements are de- —
fined in terms of both absolute (horizontal and vertical) and relative (horizontal and vertical)
components. Relative horizontal accuracy is futtherdefined as either point-to-point to point-
to-graticule. An intended use may require reporting accuracies for any or all of these
definitions. Both absolute and vertical accuracies are expressed in meters on the reference
datum at ground scale. These values are computed according to a specified probability
distribution and are reported at a specified confidence level.

25 meters at 90%

L L Confidence level

Accuracy on reference datum

FIGURE 1. Absolute-Ho zori ntal Accuracy.

-
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25 meters at 900/0 over 10Okm, (P-P)

LL

LL Point-to-Point

Distance accuracy valid over

Confidence level

Accuracy on reference datum

FIGURE2. -e-Horizs@d Accuracy( Point-to-Poin~.

FIGURE 3

25 meters at 90% over 10Okm, (G-P)

LL

LL Graticule-to-Point

Distance accuracy valid over

Confidence level

Accuracy on reference datum

elative-Horiz@l Accuracv(Gr@to PoinlJ.--

25 meters at 90°/0

L

L Confidence level

Accuracy on reference datum

FIGURE 4. Vert ical Accu~.

25 meters at 90Y0, over 100km, (P-P)

~L L Point-to-Point

Distance accuracy valid over

Confidence level

L Accuracy on reference datum

FIGURE 5. J7elative-Vertical Acc@v (Poi nt-to-Poin~.

. .

!3



MI L-STD-600001

4.4 Formu as [SI imK)lified\.

4,4.1 ~ircular Error. Horizontal accuracy.

Accuracy Value (meters) = +/ -1.073 (a,, ay)

(J= sample standard deviations, for latitude or Northing and longitude or
E%ting.

1.073 = normal deviate for 90!/o confidence level

4.4.2 ~ear Erro[. Vertical accuracy.

Accuracy value (meters) v=+I -1.646 OX
ok = sample standard deviation (meters)

1.645 = normal deviate for 90°/0 confidence level

4.5 Se Iection of normal distribut ion. The normal distribution function was selected
since it closely fits the actual observed frequency distributions of many physical measure-
ments and natural phenomena. In addition it makes error analysis a more tractable —
problem.

4.6 /lCCU acy Note.r MC&G hard copy products shall carry in the title block of the in-
dividual product a statement as to its specific accuracy. Digital products shall have an
accuracy statement in the header information. If the product has varying accuracies, a
accuracy diagram shall be depicted and for digital products, accuracy values shall be
depicted and for digital products, accuracy values shall be given in the sub-region of the
header information. Accuracy statements are not to be used on MC&G products with a scale
1:1,000,000 or smaller.

A = 25 meters at 900/.
B = 50 meters at 909’o
C = 40 meters at 90”/0

A

FIGURE 6. Accuracy Diagram.

6
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5. DETAILED REQUIREMENTS

5.1 General. This standard contains detailed requirements for both the definitions and
mathematics of absolute and point-to-point (relative) accuracy. It is understood that these
are the official statistics for stating product accuracies and for specifying hardware/software
requirements when these specifications are stated in terms of ground position accuracies.
The emphasis of this standard is on the development of the theory which defines accuracy.
The application of that theory to any given MC&G product is not presented.

5.2 Absolute ace-, Absolute accuracy is defined as the statistic which gives the un-
certainty of a point with respect to the datum required by a product specification. This
definition implies that the effects of all error sources, both random and systematic, must be
considered. Absolute accuracy is stated in terms of two components, a horizontal compo-
nent and a vertical component. The horizontal absolute accuracy associated with a product
is stated as a circular error, CE, such that 90 percent of all positions depicted by that product
have a horizontal error with magnitude less than CE. Likewise, the absolute vertical
accuracy associated with a product is stated as a linear error, LE, such that 90 percent of
all elevations depicted by the product have an error with magnitude less than LE.

5.3 j3e Iative acc uracy. Relative accuracy is that statistic which gives the uncertainty be-
tween the positions of two points after the effects of all errors common to both points have
been removed. Relative accuracy is also called point-to-point accuracy. Relative accuracy
is seen to be independent of product datum in that it is defined as the error in the compo-
nents of the vector between the two points; but is still stated in terms of “a horizontal
component and a vertical component. As in the case with absolute accuracy, the horizo-
ntaluncertainty is stated as a CE and the vertical error is stated as a LE.

5.4 Point DOsition~. Point positions derived from measurements of photographic
images are usually referenced to an earth fixed Cartesion coordinate system. A variance-
covariance matrix defining the uncertainty of this computed position relative to this coordi-
nate system is determined by standard error propagation techniques utilizing apriori esti-
mates of errors associated with the computational parameters. The apnori estimates of the
errors associated with these computational parameters are usually in the form of a vanance-
covariance matrix and includes all of the covariances resulting from the correlation of the
parameters. The parameter variance-covariance matrices used to assess product accura-
cies result from (1) statistics accumulated from redundant observations of the parameters,
or (2) statistics propagated through computations required to determine the parameters
from redundant indirect observations. An example of such computations are those required
to accomplish least squares triangulation to update exposure station positions and camera
attitudes.
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5.5 ~nce-covariance n ‘ . A primary goal of any evaluation scheme should be
the construction of the variance-covanance matrix associated with any position depicted in
the product. The generation of such matrices will likely utilize standard error propagation
techniques and/or sample statistics resulting from the comparison of positions extracted
from the product to their known positions. Such points are referred to as diagnostic points.
Ultimately the success of any evaluation method depends on its ability to approximate these
variance-covariance matrices. The variance-covariance matrix relating the errors of two
geographic positions will be defined. This is followed by a summary of methods used in the
determination of this matrix in various circumstances. Finally, the computation of the
absolute CE and LE and the relative point-to-point CE and LE is presented.

To define a covariance matrix consider two vectors, denoted by U and V, whose components
are random variables. The cross-covanance of the two vectors is defined by

E[(U - E[U]) (V - E[~)T]

where E is the expectation of the random variable and is defined as the sum of all values
the random variable may take, each weighted by the probability of its occurrence. The
covariance of U is when U = V.

-

Suppose that the geographic position of two points, and their cross-covariance matrix has

been determined. Let the two positions be denoted by ($1 A, h, ) and ($2 X, hz ) ‘Let

their cross-covariance matrix be denoted by Q such that ‘ ‘ “
,,.

[1Q,, Q,,

Q=

Q:2 Q2

where
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where

~+, is the variance of @i,etc .,

‘Oil is the covanance of $i and Xi, etc.

and

L‘h, $2 “h,% “h1h2
—

Methods for the determination of the cross-covariance matrix Q will be considered. These
methods, intended as guidelines only, are somewhat generalized in the sense that they are
not presented in terms of any one product. Two methods are presented; the first based on
the statistics output from triangulation; the second based on a comparison of positions

-- sampled from the product to known or diagnostic positions.

5.6 ~ror prgion rekdhlg to tn‘an~lat ion, First consider the case involving trian-
gulation. It is not within the scope of this standard to present an exhaustive development
of triangulation mathematics. t-iopefulty, enough for clarity and understanding is presented.

The condition equations are assumed to be of the form

A(L+V)+BA=D

where A and B are coefficient matrices,

D is a vector of constants,
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L is a vector of observations,

V is a vector of residuals, and

A is a vector of parameters usually refewed to as the state vector

In addition, define QU as the covariance matrix associated with the observational vector L
and define W as the observational weight matrix, that is,

A few words relative to the obsewations and state vector regarding their respective weights
are in order. Assume that the unknown state vector, A, has an initial value that results from
an observational reduction process and thus can be treated as part of the observations, L.
Thus, any theoretical error propagation scheme used to estimate triangulation output
accuracies depends heavily on apriori covariances associated with the obsewations or
associated with parameters treated as observations. The covariance matrices resulting
from triangulation are considered acceptable if a reference variance computed from the
residuals is believable. Define this reference variance as

where R is the degrees of freedom associated with the least squares adjustment. Since the
weight matrix is the inverse of the observational covariance matrix, the reference variance
is in variance units and will be near unity in value. In fact a: is sometimes referred to as
the unit variance. If the unit variance is not close to unity, it becomes difficult to give much
credibility to the subsequent error propagation.

Rearrange the condition equations so that the form is

AV+BA = F

with

F= D-AL.

The least squares solution is defined as that solution which minimizes the function

-

10
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$ = VTWV - 2W(AV + 6A -F)

with respect to V and A. The vector K is the Lagrange multipliers which accomplishes this
minimization. Therefore, to mimimize $,

i3@V = O and i3@A = O

must be satisfied. Thus,

a(f)tav = 2VTW “ 2KTA = o,

and

i3Q/dA = -2WB = o

along with the condition equations forms the system of equations

WV - A7K = O,

\- AV + BA = F, and

i3TK= O

which must be solved for V, K and A. It can be shown that the solution is given by

V = C)LLATK,

K = (AQ~~AT)”’ (F - BA)

A = [BT(AQL~AT)-’B]-’BT

Let

N = BT(AQ~~AT)-lB

and

AQ~~AT)-’F.
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and

T = BT(AQUAT)-lF.

-

The normal equations can be written as

NA=T

so that

A = N-’T.

The covanance matrix associated with the parameter A is determined by using the
covariance propagation rule

Qm = J,~QUJ~~

where

J*L= aA@L.

Since

A = N-’BT(AQ~~AT)-l (D - AL),

it foliows that

J*= N-’BT(AQ~~AT)-’ (-A)

and

Q&= -N-lBT(AQ~LAT)-l AQ~~[-N-lBT(AQ~~AT)-l A]T

which simplifies to

Qti = N’.

12
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It is often true that not all of the parameters in the state vector, A, are used for the
development of a product. For example, the state vector may include both ground positions
and sensor related parameters. Some products may be developed using only the ground
positions, while others may also utilize the sensor parameters. To understand this situation
suppose that the state vector can be written as

and the corresponding condition equations become

AV+BA+BA=F

which can be written as

+-
As before the normal equations, with

. . .
B=[B B]

have the form
.

(-. 1 1.

118T (AQLLAT)’

1] [

[b B] ~-i = B;l (AQLLAT)lF.
B’ A B~

To simplify the notation let

W.= (AQLLAT)-’

thus
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w

Let

N = BTwaB ,

ii = BweB ,

N=Bw@B,

; = BTWeF , and

then the normal equations are

-

Next, solve for ~ and ~ and determine Q& and QM , their respective covariance matrices.

The normal equation can be written as

Equation (figure 7) yields

~ = N.l(t - fi~)

which when substituted into equation (figure 8), yields

which reduces to

As @ - ~TN-Ifi)I (BT - ilNIi3T)Wp(D-AL).
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. ...

The covariance propagation rule states that

Q-M= [a&aL] Qu [ah/aL]T

where

a&aLs -(N - WJPIFj-I (BT- NIPBT)WeA

thus,

GM= (N - ii’ N-’N)”’.

Likewise, solve for ~ using equation (figure 8), that is,

~ ~ N-l(i - ~TA)

which, when substituted into equation (figure 7), becomes

. . . .. .. . . .
NA + NN-’(T - NTA) = T

-----

which reduces to

~ = (N - ENINT)-’(BT- iiN-lBT)WeF .

The covanance matrix associated with ~ is given by

where

a&aLs -(N - FJNOV) I (BT- NN-IB’)WeA

thus

x [(N- iww)-’ (6T- NN-’BT)WJT

15
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which simplifies to

H will now be shown that these expressions for Q~ and Q= correspond to the partitions
of N-l. Assume that A = MT, that is

or
M = N-1

which means that

‘N
iv

L-

1ii
. . I
NI

—

M

IF
L

M

1

10
!-

Oj

which, when expanded, gives the four equations

Nti+im=l,

NFA+NM=O,

~TM + N~T = O, and

m+NM=l.

Equation (figure 11) can be rearranged so that

UT= +.IfiTfi

which, when substituted into equation (figure 9) gives

(FIGURE 9)

(FIGURE 10)

(FIGURE 11)

(FIGURE 12)

NM + ii(-N-’NTM)= 1

16
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=--w-

hich, solving for M, gives

M=(N- iiN”’m)”’.

Likewise, equation (figure 10), when rearranged, gives

which, when substituted into equation (figure 12) and solving for M yields

M= (R- iiTN”’Fi) ‘.

Thus it has been shown that

QM =M

and

Q:=ti.

Atypical method of reducing the dimension of the matrix to be inverted is to “fold” the normal
-- equations. This is accomplished by eliminating some of the parameters from the state

vector. Assume that the normal equations are partitioned as before, that is

which when expanded gives the two equations

Nfi+iii=i (FIGURE 13)

and

“Folding” is accomplished by solving equation (figure 14) for,~ and then substituting the
resulting expression into equation (figure 13) and solving for A. The resulting expression
is called the folded normal equations; that is,
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implies that

which upon substitution into equation (figure 13), yields

Ni +W’(; - iii)=+

which reduces to

(N- iiN-i@fi=i- -RR-’;

the folded normal equations are

M-’A=T - ~ti-ty.

It will now be shown that the covanance matrix, Qti, is given by the same expression as in
the unfolded case, that is,

Since

. ..
substitution for T and T gives

.

-

Using the covanance propagation rule and the fact that

dGaL = - ~ (BT - ~N-’BT)W,A

18
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yields

Q~ = M (BT - iiN-Ii$)WeACIuATwe

x (BT - NK-’-6T)TM

which reduces to

QM=M

which is also the result in the unfolded case.

With the parameters ~ now known, along with QN it is possible to determine ~ and
Q ~ Consider

L. and substitution for ~ yields

X = N-I~BTWe(D-AL) - fhiq

thus ~ is a function of both the parameters ~ and the observations L and the covariance
propagation rule is

Q ~s [a~aL dtia~l

~ :JK:]

where

Eii/i3L = -NIBTW,A

and

a%di = -N-IN!

19
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Therefore,

QM = [jj-lBT~e~

which reduces to

Qti =..“

~.l● ~.l~TMNN.l

with the substitution

Q~ = M.

‘Q,, O10 Q“”

(FIGURE 15)

Equation (figure 15) can be used to compute Q2~.when the normal equations have been
folded. It will now be show that this expression for QG IS equwalent to that obtained m
the unfolded case, namely M.

Since

Nti + RM =0

and

fiTM + NfiT =0,

it follows that

.—. .
MNN 1. N ~~fi

thus,

-

QM = N-’+N“’iikfiM.

2C

4
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Since

M = (N -NT~-’~)-’,

it follows that

thus,

Gfi= N-’+N’(N- M-l)M

which reduces to

Q+t

as in the unfolded case. .

5.7 _tion of trianaulamn ou~. For the purpose of applying this information to
product evaluation, it is assumed that the vector ~ has as its components ground location--
coordinates which are to be used as diagnostic control points by the production organiza-
tion. The covanance matrices for ~ and ~ are given by QM and QM, respectively.

It should be noted that the organization generating some specific product may not use
sensor parameters, that is, the organization will not be supplied with the vector A. Those
organizations that require sensor parameters have two possible sources, either the output
of triangulation in the form of aposterion parameters or the output of some observational
process in the form of apriori parameters. In either instance, tie same notation is used
herein,

The possible sources of the ground positions used by the production organizations are:

a. The output from triangulation, although it is unlikely that the diagnostic control
points are part of the triangulation process.

b. The output from a derivation utilizing either the apriori or aposterion sensor
parameters,

c. The output of some observational process such as surveying.

21
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First consider the case where only W and QM are used by the production organization. This -
means that the organization has either the capability of measuring mnjugate image
coordinates from a stereo pair and then computi ng the ground coordinates or the capabilit y
of establishing the stereo model on some real time instrument and observing the model
coordinates directly. Let G denote the ground positions output from this process, that is

G - F(~,i)

where ~ is the vector of either image or model observations. The function F is usually the
projective relationship between the image coordinates and the model coordinates andior
some set of coordinates transformations of the obsewed position to the desired product
reference system. The covanance matrix associated with G, denoted by Cl~~ , is given

where Qti denotes the covariance matrix associated with ~ and must be determined during
the obsewational process as an integral part of that process.

The vector G may consist of the coordinates of many ground positions, but without loss of
generality assume that G is comprised of any two ground positions, each with three
components, thus QGG is the 6 x 6 covanance matrix required to compute the relative
circular and linear uncertainties, that is, if G is the product being evaluated, then

Q= QGG.

It is possible that ground coordinates derived from triangulated parameters maybe provided
to the production organization for use in the generation of a product or for their use as
diagnostic control points forthe purpose of product evaluation. lfthe ground points are used
in the generation of a product, then the relationship of those ground positions, the state
vector and subsequent observations, denoted by~, required for product generation can be
written functionally as

G’=F’(~, ~, Gor A).

“The function F may consist of the function F as previously defined and some additional
function describing a process involving the adjustment of observations to the vector G. The
covanance matrix associated with G’ is
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Again Q~e can be computed for any two points and assuming that G’ is the produ~
output gives

Q = QG,G..

This concludes the discussion of error propagation with covariance matrices as a technique
for product evaluation. Evaluation schemes based on this technique require accurate
knowledge of the apriori covariances associated with the state vector as well as accurate
covanances associated with all obsewationai processes involved with the generation of the
product.

5.8 ror Dr~ation from sa~ e statI istics. This section considers the task of

product evaluation using sample statistics associated with residuals arising from compari-
sons of the product to diagnostic control points.

--

The following analysis is not dependent on the coordinates system definition, however,
eventually the resulting covariance matrix must be transformed to geographies or some
local system with horizontal and vertical components.

Let the true, but unknown, coordinates of the jmdiagnostic point be denoted by P~j; let the
coordinates of the same point as extracted from the product be denoted by PJand let the
coordinates of the point as used for diagnostic control be denoted by P~ j.

The error sources contributing to the product evaluation process that are considered in the
following analysis are:

a. Biases in the product,

b. Random errors in the product,

c. Random errors in the diagnostic control positions,

--
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d. Random errors in the measurements of the diagnostic positions in the product. -

Let a residual vector, denoted by by Vi, associated with the jrndianostic position extracted
from the product be defined such that

PTj=P, +v. J,

that is, the true position is equal to the product plus the residual vector. Likewise, define -
a residual vector, denoted by V~j, associated with the diagnostic control position such that

PTj =Pdj+vd,

These two residual vectors

Pj-Pdj=vd j-v 1!

are related by

thus the difference in coordinates of the points extracted from the product and the
corresponding diagnostic control position is equal to the difference in their residual vectors.
This fact is the key to product evaluation using sample statistics.

Define

bi=v, i-v
~“

Assume that the diagnostic control positions are unbiased with respect to the product
datum, that is,

EIV,, ]=O.

This assumption is usually necessary because any bias in the diagnostic control positions
are unknown and/or unmeasurable. Frequently the diagnostic control positions are
generated with source from a population which has an unbiased error distribution. The
covariance matrix associated with the source is usually applicable to the entire population
or at least that part of the population with the same characteristics as the source used for
the diagnostic derivation. This means that any biases in the diagnostic positions should be
interpreted as an error from an unbiased population. Thus the associated covariance matrix
is representative of all diagnostic points more so than those developed for the evaluation
of a single product area.

-
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Consider two points, point i and j, and let Qti denote the covanance matrix associated with
the diagnostic control position such that it is partitioned as

[

Qd,l,i

Q:ij

Qd,ld

QdJj1
or

Thus, QW is a 6 x 6 covariance matrix with $ld~~k = i orj, being the 3 covariance matrix
associated with the k* diagnostic control posdlon’. In actual practice the total Q~~matrix is
seldom available. At best only the diagonal partitions are supplied. A more likely event is
that a set of variances or standard deviations are provided that apply equally to all the points.

The mean residual vector, ~ , of the diagnostic positions extracted from the product is
-

defined as

v = E [V,]. (FIGURE 16)

If v = O, then the product is unbiased. However, this is not always the case and is not
assumed. !t is assumed that the residual vector associated with the jm measured diag-
nostic position can be represented as the sum of the mean residual vector and an
unbiased randomly distributed residual vector, denoted by V~ j; that is,

v =VRJ+V.

If systematic errors, other than biases, are detected in the product, then ~ should be
replaced by the function defining that error, although it would be more appropriate to remove
the effects of that systematic error from the product. Since

8, =Vdd-v
1’
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substitution for V, gives

6,= V, J- VRJ-V

The mean value of all 6, , denoted by 6, is

and since the residuals V~~ and V~J are assumed to be samples from an unbiased
population,

i= -v’

The error source yet to be considered is that which occurs in the measurement of the
diagnostic positions depicted by the product. Let the residual vector associated with the
measurement of the jti point be denoted by VU, and defined such that

VRJ = VPJ + vMi ,

where VP, is that part of the random residual vector arising from the errors in the product.
Both V~J and VP~ are assumed to be samples from an unbiased normally distributed -
population. Therefore, when all error sources are considered,

6, = ‘~j-v~J-\/~J”i .

The covanance matrix associated with the random error of the two points i and j as depicted
in the product is defined as

[ ‘
Q QP,JP,,l

Q 1
PP =

Q;ld Q,jj
J

where

‘P,lj = ‘[VP, I,V;,J “

Define

[1

6,
6 =

6, “
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The covariance matrix of 6, denoted by Qm , is

which simplifies to

Substitution of the definition of 5 and simplification, assuming the measurement errors are
independent of all other errors, yields

QM = Q&+ Qpp+ Qm - Q,p - Qpd

where

Q,, = E[vdjv ;J

L and

Qw = EIVM,,VJI“

The desired matrix Q giving the statistics associated with the product is

Q = Q,, + B(~),

where B (~) is a matrix that is a function of the bias. The last section of this standard will
describe a methodology of computing the matrix when affected by a bias. Forthe remainder
of this section, the bias term will not be considered, only the random errors are propagated.
Therefore

Q=Qti - Q& - Qm + Qdp+ Qdp (FIGURE 17)

This is a generalized form of the relationship between the covanance matrix associated with
the product and those associated with the error sources in that the assumption was that of
independence of the errors incurred with the measurement of the diagnostic points in the
product. This equation is useful since it can be simplified according to the statistical
relationship between the diagnostic control errors and the product errors.
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5.9 ~ when the d-t c a~ indeoe de~i i n The -
first example to be considered is that where the error sources associated with the diagnostic
control uncertainty and those associated with the product uncertainty are totally independ-
ent, that is,

QotiP =

thus,

Q= QM-Q&-Qw .

This situation frequently occurs in product source and evaluation where the dianostic
control resutts from a ground survey.

5.10- Ie s&,@tics when di~no stic an~roduct errors are @endent. The other
situation to be considered is when the diagnostic control is developed from the same source
as the product. In this instance the ma?rix

-
the only difference being the error associated with the measurement procedures for control
development and those associated with product generation. Let the covariance matrix Q@
be redefined as the sum of the covanance matrix associated with the measurements
required for control development, denoted by QMM,and the covanance matrix associated
with all other error sources related to control development, denoted by Q~,d, that is,

Q&= Qd= .

Since

Q,, = Q==

approximately, then

Q= QM-Qdd- QMw-QMM+Qdd+Qdd

-
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which simplifies to

Q= Qm+Qdd-QMM-Qm .

This appears to be a larger uncertainty than in the previous example in the sense that
Q~& is added instead of subtracted. However, consider that

approximately, where Qm is the covariance matrix associated with data extraction and
subsequent processing required for product output. This means that all error sources in the
diagnostic control and the product are the same except for the measurement errors, then

Q= Q=d+Q=

approximately, thus the uncertainty is not nececssanly Iargerthan in the previous example.
This second example is the usual situation existing in the generation and evaluation of a
product.

5.11 Summarvofsa ~t istics methodolo~. To summarize, the following steps are
L required to compute the covanance matrix using sample statistics resufting from the

comparison of the product to diagnostic control positions.

a. The production organization is supplied with diagnostic control positions which
must be distributed such that a reasonable number of pairs for the point-to-point
accuracy computations are available. The point-to-point relative accuracy is that
accuracy associated with the horizontal and vertical components of a vector from
one product point to another product point. Since the point-to-point accuracies
are likely to be a function of the vector length, the vectors can be classified
according to length and an accuracy computed for each class. The accuracy
assigned to the product is that associated -with the class of vectors of length
specified forthe product. Forthe purposes of this standard, consider only a single
class of vectors. Let the subscript 1 denote either the initial or terminal point of
the j vector, that is, P~,,jdenotes the position of one of the points defining the jm
vector. The production organization should also be supplied with the covariance
matrices Qww, QW and/or Cl~ti. It is possible that each diagnostic control position
has a different covariance matrix supplied, but this is not the usual case. Usually
a covariance matrix or standard deviations are supplied that apply equally to any
point.
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b.

c.

d.

e.

Theprodudion organization identifies thediagnostic lo=tionsin theprodu~and
measures their positions. These measurements are used to compute the geogra-
phies of the points, denoted by P,,,

The 6 x 6 cross-covanance matrix Q~ is computed by

——
-VW

where

m

and m is the number of pairs selected for the evaluation process. Since the point- -
to-point accuracies assigned to a given product are for a specified distance, the
diagnostic points must be paired so that they are separated by approximately
that distance.

The covariance matrix Qw is determined. This will require experimentation using
redundant observations. It is unlikely that this experiment needs to be repeated
everytime a product area is evaluated.

The covanance matrix Q is computed using the appropriate equation

Q= QM-Q&-Qw

if the diagnostic control positions are derived from a source other than that used
for the product generation, or

Cl = Q&- Qdd - QWM- Qw

if the diagnostic control and the product are developed from the same source.
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5.12 Abs~ acv compu&tr ions. The methodology for computing absolute and
relative accuracy from the covariance matrix Q is now presented, where Q is partitioned
such that

[1

Q,, Q,,
Q=

Q:, QZ .

Depending on the distribution and pairing of the diagnostic points, the covanance matrix Q1l
can be associated with the absolute accuracy of a point located in a specific area of the total
product area and the covariance matrix Qz can be associated with an area at the distance
required to satisfy the point-to-point accuracy specifications.

Regardless of the method used to determine Q, it is iikely that the angular units are radians
and the linear units are meters. The proposed method of computing accuracy assumes that
all units are meters.

For the purpose of this coversion a spherical earth, for each local area, is assumed with the-.
radius defined by

R = a/(1 - e2sin2@)$

where a is the semi-major axis and e is the eccentricity of the
distance between two points, denoted by S, along this meridian

S= RA),

where A@is the angular separation in latitude of the two points.
standard deviation of the latitude and longitude, respectively, in

reference ellipsoid. Any
can be approximated by

Let 6+ and b~denote the
units of meters, thus
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where O@and al are the standard deviations of the latitude and longitude, respectively, in
radians as extracted from Q,, or Q=. The elements of the covanance matrix Q are modi-
fied such that the correlation between the variables is maintained. For example, let P+,
denote the correlation coefficient between $ and k, thus,

which is simplified to

A

0+1= R2cos@● C$,k.

Proceeding in this manner the units of all elements of Q cap be converted to meters squared
without changing the statistical content of the matrix. Let Q denote the modified covariance
matrix such that

6=
‘6,1

.

The absolute CE and LE can be computed using either 61, or 6Z. If the Prduct area –

being evaluated is of uniform accuracy, the results should be essentially the same
regardless of the choice. It is su gested that the absolute CE and LE be computed tw”ice,

8once using d,, and once using ~, The maximum CE and LE should be selected for the
product evaluation.

Consider either the covariance matrix Q,, or Qz. Assume that the horizontal and vertical
components of the uncertainty are independent. This assumption means that the covari-
ances between the horizontal components and the vertical component are zero and Q,, is
given by

[1

0: 0,1 0

Q a+, O: 0 .11-

0 0 0;
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The subscripts on the matrix elements have been dropped since there is not a need to “
distinguish between the two partitions. If the covariances indicated are not near zero the
axis of the error ellipsoid does not point in the vertical direction. Not much can be done about
this condition unless the definitions of accuracies associated with the products are to be
modified. Fortunately, these covanances are usually near zero.

The absolute LE is given by

LE = 1.6449 VW_

The procedure for determining the absolute CE is more complicated. To ensure that the
axes of the honzontai error eiiipsoid are used in the computations it is necessary to find the
eigenvalues of the horizontal partition of the covariance matrix. These eigenvalues are the
magnitude of the axes of the horizontal error ellipsoid, thus

q- -p

=0

----- gives the eigenvaiues p,

P =i(~+d.)=

which are

:J(q - @)2+ 4(061)2 .

Note that if the two components are independent, then a+~= C and

P=i (q+~:)=+{~:-~k)

or

K=o$or 0:

as expected.

Let U and V denote the two independent variables whose uncertainty is given by the
eigenva!ues, that is,

q=$(%+af)+ ~i(q-%)z+(o,. )2 (FiGURE 18)
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and

%=i(@+d)-JL4 (* - &l)z + (Q2 . (FIGURE 19)

Theabsolute CEiscomputed utilizing auandav. The usual method is to let

CE = 2.146(cU + av )/2

however this approximation is valid only if 0.5 g cs#su s 1.0. Let

c= aJCT”

where

6“ <a”.

The graph illustrates the percent error for CE as a function of C when the absolute error is
computed using the above approximation.

X ERROR -

-.
.1 .2 34 ,5 6 .7 .0 9 1.0

FIGURE 20. Percent of err or for CE.

The error is such that the approximation gives results that are overly optimistic, The
following method is suggested as a way to avoid this error.
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Suppose that

CE = Kcu .

24
2.2—

2.0-

1.8-

16-

0.0 1 I I I I I I i I

1 2 34 5 6 7 e 9 1.0

FIGURE 21. Correct value of K as a function of G.

This graph was constructed from data available in the ~ ilitv an

~Ms_, Seoond Edition, and is valid only if U and V are indep~nclent variables, which is------

ensured since &u and &Vare the

A second order polynomial was

K=l.6545-O.13913C+

with

(TK = 0.005

eigenvalues of the covariance matrix.

fit to the values shown in the graph to obtain

0.6324C2

thus,

CE = (1 .6545 - 0.13913C + 0.6324C2)OU
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5.13 Mt-to-Qoint re~ve ace- co -ign~. Since the elements of the covari-
ance matrix C! are in units of meters squared, it is legitimate to use the components of the
vector defined by the two points for the purpose of point-to-point accuracy computations.
Let these components be denoted by

M= L2-L1

and

Ah =hz-hl.

The objective is to determine the covanance matrix associated with A$, Ak and Ah. This
covariance matrix is then used to compute the relative point-to-point CE and LE. Let
this covariance matrix be denoted by QPP,thus

QPP
= JQJT

where

thus

It is assumed that the horizontal and vertical differences are independent, thus the
covariance matrix QPPis of the form
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Q,p =

Let

Q,p =

that is

dpp =

[

6,,
0

L

01

CT’!* o .

-J

= O, then A@and M are independent variables, but if au # O, it is necessary to
!e~~r%ine the semi-major and semi-minor axes of the error ellipse defined by ~... The
length of these axes are the standard deviations of the
and V. The variances for U and V are the eigenvalues

and

two independent variables, say U
O f QPP,thus

The remaining steps for computing relative CE and LE from au and avare identical to those
described for computing absolute accuracy.
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5.14 Plternate error m2Dagja!!Lion fr ii. An alternate method of .
obtaining the product accuracies from sample statistics will now be described. This method
requires fewer computations, but is recommended for use only when the diagnostic control
uncertainty and the measurement uncertainty associated with the extraction of the
diagnostic points from the product is small when compared to the uncertainty associated
with the product.

Suppose that the diagnostic control positions are in terms of geographies, that is, the points
(crj, $, hj), j = 1,2, ... are provided to the productio~ organization. Let the corresponding
positions as measured in the product denoted by (aj, $ $). The difference of the product
and diagnostic control for the jmpoint is

If the assumptions of negligible diagnostic control uncertainty and measurement uncer-
tainty are valid, these differences represent the errors in the product at that point.

if the units associated with these differences are not in meters, they should be convefied -
as previously detailed.

Let ARJ denote the horizontal error associated with the j* diagnostic point, that is,

AR, = ~.
.

These horizontal errors are used to construct an ogive. An ogive is defined as a graph
showing the cumulative frequency less than AR plotted against AR. The following graph
illustrates the concept of an ogive.

‘“~
ao-

60-

40-

2Q-

00 I I i I I I I I /4 .5678910

FIGUR2E 2;. The cone@ of an oa iv?
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In practice the basic idea of the method is to delete the
until 10 percent of the samples have been eliminated.
taken to be the absolute CE.

The absolute LE is determined in a like manner using

Ah, =;j-h I

points with the largest differences
The largest remaining residual is

and discarding the largest differences until 10 percent of the differences are eliminated. The
largest remaining difference is the absolute LE. Any systematic error in the product will
contribute to the acouraoy when determined from an ogive, but an assessment of the
magnitude is not obtained.

The relative point-to-point accuracy can also be determined by use of the ogive. Consider
the vector, denoted by d,, between the two diagnostic control positions. Let

Hd@J
d,= dk

Ld

L-

denote the components of this vector. The points should be separated by approximately
the ~istance required by the product specification for point-to-point accuracy computaticms.
Let dj denote the vector between the same two points as depicted in the product, that is
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Define for each diagnostic pair,

rd~, - d@-

Adj=a, -d,= d! - d$

Ldfij - dhj
—

and assume that all units are meters. Let

Ar.J- ~(d$l - d$)’ + (cf$ - d$)’

arid form the ogive to obtain the relative CE.

Likewise form the ogive using

Ah = dh - dh.J J

and determine the relative LE. -

5.15 v Influenced bv bias. The affects of bias on the evaluation prbcess is now
considered. This section details the methodology forthe incorporation of the bias into the
accuracy computations. While the development presented is in terms of absolute
accuracies, the same relationships are applicable to relative accuracy computations.

The assumptions of Section 5.8 are still valid, in particular the assumption that the prod-
uct, not the diagnostic control, is biased. It is further assumed that the sample statistics
arising from the evaluation process described in Section 5.8 are captured in the form of the
covanance matrix Q (figure 17) and the bias vector V (figure 16).

First consider the bias applied to the CE computations. The methodology described is
based on a study report entitled Circular Frror Proba bilitv of a Qua ntitv Affected by a Biu,
by Melvin E, Shuttz, DMAAC.
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Define the components of the bias vector V as

[1
v,

v= iq

Vh

then the horizontal bias, denoted by b~, is given by

where b~ is always positive and is considered to be in units of meters. The values of c:
and a~as defined by Figures 18 and 19 are extracted from the covariance matrix Q. The
resulting values of au and crvare used to compute CE.

The equations developed by Shultz require a 0.39 P circular error as input, thus, define CTC
such that ‘

CTC= 0.4660 CE.
‘-----

Without loss of generality assume that the bias is along the x axis of an arkitrary coordinate
system. Also assume that the density function, which is that associated with a circular
normal distribution, is centered at (b~, O). From the definition of probability it follows that

P[X2+Y2<CE’1= ~j ~ex~ { ~ [(x-b~)z + y’]} dxdg
2* 2(JC

or in terms of polar coordinates

This equation must be evaluated such that P[r < CE] = 0.9 is satisfied. The study report by
Shuttz provides an algorithm for evaluating the probability. In addition, a table of circular
probabilities as a function of b@C and CE/aC is given in the CRC Handboo k of Tables for
Probab ilitv and S- , Second Edition. These tabulated values can be used 10verify the
equation given by Shultz,

----
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~ = 2.1272+ 0.1674+) + 0.3623 ~’ -0.0550 &)’ .
c

Thus the CE, with bias, is given by

CE = 2.1272 OC+ 0.1674 b, + 0.3623$ -0.0550 $

The LE, when influenced by a bias, is computed in a similar manner.

The value of a~, the standard deviation (0.69P) associated with the height, is extracted from
the covariance matrix Q. Let bv denote the vertical bias such that

bv=~r.

It can be shown that

LE =1 bvl +Kcs,

where K is a function of the magnitude of the bias and standard deviation. The value of K --
is defined by the following table which is extracted from normal distribution tables.

Ibvlla, K

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

.6449

.5527

.4772

.4176

.3716

.3389

.3158
1.3016
1.2924
1.2875
1.2844
1.2829
1.2824
1.2821
1.2815

When lb,! s 1,4, K = 1.2815.
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The values of K could be computed from the equation

K
P[X<LE]= d’ J EXP { ~ (X-lb~ 2, }dx

-(K + 2b) 2<

solving for K so that P [X< LE] = 0.9.

A cubic polynomial fit through the tabular values yields

1%1 1%1 Ibvl

K = 1.6435-0.999556 ~ + 0.923237 (~ )2 -0.282533 ( ~ )3 .

This value of K should be used when Ibvl /o~ S1 .4.

-.
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6. NOTES

(This section contains information of a general or explanatory nature that may be
helpful, but is not mandatory.)

6.1 jntended use. This standard is intended to ensure accuracy uniformity of prod- “
uct designers, producers and users.

6.2 International sta ndardization ag eernents.r

“Certain provisions of this standard are subject of international standardiza-
tion agreement. When amendment, revision, or cancellation of this standard
is proposed that will modify the international agreement concerned, the pre-
paring activity will take appropriate action through international standardiza-
tion channels, including departmental standardization offices, to change the
agreement or make other appropriate accommodations.

6.2.1 Jnte rnational St@ardimio n Agreements (STANAGs]

This section is not applicable to this standard.

6.2.2 ad ri~artite Sta nda rdization Agreements K2STAGs).

This section is not applicable to this standard.

6.2.3 Air Standardization Coo rdinatina co remittee Agreements (ASCC AIR STDs/

~TDs/ADV PUBS). .

This section is not applicable to this standard.

6.2.4 international MC&G aa reemen~.

This section is not applicable to this standard.

6.2.5 ~xecut ive orde~.

This section is not applicable to this standard.

-
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6.2.6 ~ncv w cements.r

This section is not applicable to this standard.

6.2.7’ her bmen-.

This section is not applicable to this standard,

------
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